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Regarding water and land use, China's farming industry is 

unrivalled. Energy consumption and carbon production are two 

sides of the same coin for the agricultural sector. Utilising 

approaches to agricultural water pollution, biological ecological 

footprint, energy ecological footprint, and carrying capacity, this 

research investigates the ecological pressure index of agricultural 

water-land energy in China and the spatiotemporal patterns of 

resource depletion. The main results are as follows: There was an 

upward trend in China's agricultural BEF, reaching almost 66% of 

the total in 2020. Although it decreased, the ecological impact of 

PEF (acid runoff from farms) remained high at around 33%. 

Agricultural energy usage, on the other hand, has the lowest EEF. 

Over the last 20 years, there has been a 114.663% increase in 

agriculture's total ecological footprint (TEF) per person. Ecological 

footprints per hectare of agricultural land ranged from 3.16 to 3.63 

hectares. There has been a substantial increase in ecological 

efficiency in the agricultural sector. Shandong, Henan, and 

Heilongjiang provinces have among China's highest TEFs. Sichuan, 

Tibet, and Hunan are the three provinces with the highest 

agricultural total ecological capacity (TEC). With stress indices 

(TEF/TEC) of 1.42 and 1.14, respectively, Tianjin and Henan 

provinces have the highest levels of agricultural ecological stress. 

Sustainable crop production is hindered because of the significant 

disparity between the demand for and availability of natural 

resources in agriculture. In addition to offering strategies and ideas 

for fostering sustainable agricultural expansion, the results may 

shed light on the causes and dynamics of resource pressure in 

agriculture across different eras and regions. 
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Introduction 

The agriculture industry boosts gross domestic product. In 2021, 55% of China's land area was 

earmarked for agricultural use, according to the World Bank Group (2024). Sixteen per cent of the 

country's water usage, one point eight per cent of its energy consumption, and twenty-seven per 

cent of its output value came from agriculture (Li et al., 2019). The capture of carbon dioxide is 

one of the main goals of agricultural production. While automation and modernisation in 

agriculture boost production efficiency, they also increase energy input, increasing carbon 

emissions, according to research by (Koondhar et al., 2020) and (Shahzad et al., 2018). Water 

pollution results from nutrient leaching caused by continuous and excessive fertiliser application 

(Zhang et al., 2023). Agricultural carbon emissions are significantly influenced by the quantity of 

fertiliser applied (Wan et al., 2024). With the world's water, arable land, and energy supplies 

steadily declining, managing these resources sustainably for agricultural purposes is more 

important than ever. Hence, this research has a great deal of theoretical and practical value. The 

ecological footprint theory has been used in several research to evaluate agricultural techniques in 

terms of their water, land, and carbon-carrying capacity (Pata, 2021). Published by Abedi-Koupai 

et al. There is a rapid depletion of available water resources due to global trends. To better 

comprehend water supply constraints, examining the agricultural water footprint is beneficial. It is 

crucial to comprehensively analyse the spatial correlation between grey water footprint and 

agricultural water contamination (Feng et al., 2024). Environmentally responsible farming 

practices are supported by water footprint evaluations (Hau et al., 2020).  

Agricultural systems depend on interconnected resources such as land, water, energy, and food, 

which are impacted by many variables that affect agricultural sustainability (Koondhar et al., 

2021). Several new domains have emerged within agricultural research in recent years, including 

carbon footprint, water footprint, and land footprint (Gao et al., 2024). The food-energy-water-

waste nexus (Y. Wang & Qian, 2024), the water-land-food-energy nexus (B. Wang et al., 2019), 

the water-food-carbon-land-ecology-nutrition nexus (Akbar et al., 2021), and the water-energy-

food-carbon nexus (Chen et al., 2022) are just a few examples of the complex interdependencies 

that have been the subject of recent studies. The irrigation of crops and the husbandry of animals 

account for the bulk of agricultural water use. Equipment used for planting, watering, and 

harvesting accounts for the bulk of energy usage on agricultural land. According to (Cheng et al., 

2023), pesticides and fertilisers are indirect energy sources. Mathew & Panchanatham (2016) state 

that the concept of an individual's "carbon footprint" is based on the "ecological footprint" and 

attempts to quantify the amount of land required to sustain a certain level of human consumption. 

A preliminary investigation on the growth of female entrepreneurs: case studies from India. 

(Mathew & Panchanatham, 2016) suggest calculating the energy ecological footprint by translating 

fossil fuel use into land area and then applying the corresponding carbon emission factor for that 

energy source. Female entrepreneurs' journeys: a preliminary investigation using case studies from 

India. Volume 3, Issue 1, Pages 1-3, 2003, Journal of Research in Marketing and Entrepreneurship. 

To provide a more accurate picture of agricultural carbon emissions and to eliminate extraneous 

estimations of the agricultural carbon footprint, this study measured agricultural energy 

consumption using the energy ecological footprint method. Water, land, or carbon footprints are 

some of the specific factors that have been the primary focus of prior studies. Other studies have 

looked at the relationships between food, water, and land, or between land and energy. Despite the 

importance of water, land, and energy as resources for agricultural production, there has been little 

study on the framework of these resources' usage in agriculture. Therefore, agroecological stress 

and comprehensive assessments of water, land, and carbon's ecological impacts are no longer 

adequate (Fig. 1). 
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Figure 1: The research methodology 

Applying the theoretical framework of ecological footprint theory, this study explored the water-

land-energy nexus in agriculture. By building a quantitative model and analysing the ecological 

footprint of water, land, and energy, as well as the ecological carrying capacity of agriculture, we 

brought attention to the present situation and regional disparities in the demands for resource 

allocation within China's agricultural production system. From 2000 to the present, this study 

examined the ecological footprint of the water-land-energy systems used by China's agriculture 

sector on a province level, considering both the spatial and temporal dimensions. In addition, it 

examined the factors that impacted the outcome. The study provided empirical information to 

assist decision-making in pursuing sustainable agricultural expansion in light of resource 

constraints and environmental concerns. This research looked at China's farming methods in depth, 

focussing on utilising energy, land, and water. The results improve the existing research 

framework, theories, and methods in agricultural systems, which in turn provide a foundation for 

well-informed decision-making and significant practical benefits for promoting sustainable 

agricultural growth in China.  

2. Techniques and information 

2.1. Total Ecological Footprint of Agriculture (TEF) 

This study examines the agricultural sector's overall ecological footprint (TEF, hm2), including 

biological, energy, and water pollution. This concept is founded on the idea of ecological footprint. 

Mathew & Panchanatham, (2016) published an exploratory research in the Journal of Research in 
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Marketing and Entrepreneurship on the progress of women entrepreneurs within Indian settings. In 

their work, they established the following formula:                         

                                                                                                 (1) 

2.1.1. Biological Ecological Footprint (BEF) 

Arable land's ecological footprint is proportional to agriculture's biological impact. 

   

                                                      ∑   
   

  

  
                                                         (2) 

The equilibrium factor, symbolized as γ in this context, is the ratio of the total biological output 

across all land types on Earth to the average biological productivity of a specific land type. Ci 

denotes the entire number of biological resources connected with i, whereas Pi represents the 

average yield of these resources in China. In 2020, China's grain production made up an 

astounding 92.1% of the world's total grain output, and this research uses the grain ecological 

footprint to demonstrate agricultural biodiversity-ecosystem function (BEF). According to (Wei et 

al., 2018), the worldwide average grain yield was 3.06 t/hm² in 2000, 3.54 t/hm² in 2010, and 4.11 

t/hm² in 2020, as published by FAO (2023), and the γ value for arable land is 2.52. 

2.1.2. Footprint on the environment from energy use (FEE) 

Raw coal, petrol, kerosene, fuel oil, and natural gas are the five components of the agricultural 

energy ecological footprint (EEF, hm2). (Lelieveld et al., 2015) provide a detailed explanation of 

how the EEF is calculated.                                           

                                                           
      

  
                                                          (3) 

Where the ultimate application of energy i is represented by ni (t or m3). Ep stands for ecologically 

productive land's mean carbon sequestration capacity, which is 4.45 hm²/tC. In terms of energy 

carbon emission coefficient, etc, we have the following fuels: natural gas (0.00047 tC/m3), 

kerosene (0.88 tC/t), gasoline (0.85 tC/t), and raw coal (0.57 tC/t) (Xie, 2008). 

2.1.3. Water pollution ecological footprint (PEF) 

(Ji et al., 2023) found that the ecological footprint of agricultural water pollution may be 

determined by dividing the grey water footprint (WFgrey) by the global average water productivity 

(Pw, 3186.36 m3/hm2). When compared to other agricultural fertilisers, nitrogen is by far the most 

prevalent. Thus, nitrate, a fertiliser based on nitrogen, was included in the Agricultural PEF 

evaluation. 

                                                                                                          (4) 

According to Class III water quality values, the supreme allowable nitrate attentiveness in 

superficial aquatic is 10 mg/L (0.01 kg/m3), as dictated by environmental rules. This is the formula 

for WFgrey (m3): 

 

                                        (    -      )                                   (5) 
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The nitrogen fertilizer leaching rate, represented as α (%), indicates the proportion of nitrogen that 

is lost to aquatic systems as a percentage of the fertilizer quantity. According to Deng and Chao 

(2022), 7% is the value of α in this investigation. Cmax-N is defined as 0.01 kg/m3, where CN is 

the quantity of nitrogen fertiliser used in agriculture, measured in kilogrammes. (O’Hara & 

Kakovitch, 2023) previously developed the natural background concentration, Cnat, which is 

measured at 0 (kg/m3). 

2.2. Total Ecological Carrying Capacity (TEC) of Agriculture 

In agriculture, the total ecological capacity (TEC, hm2) is comprised of the biological ecological 

capacity (BEC, hm2), the energy ecological capacity (EEC, hm2), and the water pollution 

ecological capacity (PEC, hm2). The formula for calculation is given below: 

 

                                                                                           (6) 

2.2.1. The carrying capacity of biological systems  

The real biologically productive land area available in a specific location is represented by the 

agricultural BEC (hm2), which indicates a 12% loss for biodiversity protection. A technique for 

calculation is provided by (Ajaegbu, 2014): It involves: 

 

                                           ∑       
 

   
                                   (7) 

Aj (hm²) in equation (7) represents the magnitude of type j arable land, which includes forests, 

grassland (pastureland), and aquatic regions. The formula for determining the equilibrium factor, 

rj, for land class j is as follows: That is, the total biological productivity of all land types divided 

by the average biological productivity of land type j on a global scale. For agricultural, forest, 

grassland (pastureland), and aquatic settings, the rj values were 2.52, 1.28, 1.04, and 0.79, 

respectively, according to (Ummah, 2019). Yield factor for land plot j is represented by yj. 

      

                                                 
(∑        

 

   
)   ⁄

(∑             

 

   
)     ⁄

                                          (8) 

Aij (hm²) is the area determined for type i product cultivation on type j land. Here, APn, ij (t/hm2) 

is the mean national production of product i from land j. The designated area of type j for growing 

product i is represented by An,j (hm2). The variable j stands for the country's arable land area, 

which is denoted as j (hm²). (Raza & Tang, 2024) used yj as their reference point. 

 

2.2.2. Environmentally friendly energy carrying capacity 

Energy ecological carrying capacity (EEC, hm2) in agriculture is reflected in the carbon sink value. 

Forests and grasslands account for 93% of the absorption capacity (not including agricultural EEC), 
however, these are the sole carbon sinks that this article focuses on. 

 

                                                                                         (9) 

                                             (
  

    
 

  

    
)                                      (10) 

The cumulative carbon sequestration by woodland and grassland is represented by CS (t), the area 

of regional woodland is denoted by Af, and the area of grassland is indicated by Ag. The carbon 

sequestration potentials of global forests and grasslands are measured at 3.8096 t/hm² and 0.9482 
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t/hm², respectively, according to (Yousefi et al., 2023). The carbon uptake ratio for grasslands is 

17.28%, according to (Raihan et al., 2023), whereas for forests it is 82.72%. 

 

2.2.3. Permissible ecological carrying capacity for water contamination 

The following method of computation is used to evaluate the ecological carrying capacity of water 
resources, which is referred to as PEC in this study (Financing, n.d.): 

                                                                                                (11) 

                                                          
  

     
                                                         (12) 

 

In cubic meters, Qi represents the total water resources of the research area. The symbol φ 

represents the yield coefficient of the area's water resources. (Nag, 2024) reported that the global 

equilibrium factor for water resources is 5.19, abbreviated as i. r. The area of the region is 

represented by Si (hm2). Pi, measured in meters squared per cubic meter, is the area's water 

resource production capability, which is calculated by dividing found that Pw is 3186.36 m³/hm². 

2.3. Environmental Stress Index 

One way to determine resource utilisation levels is by comparing ecological footprint to ecological 

carrying capacity. Comparing the total ecological footprint (TEF) with the total ecological carrying 

capacity (TEC) is one way to assess the ecological effect of agriculture. The pressure index of 

agricultural biological resources is obtained by multiplying the biological ecological footprint 

(BEF) and the biological ecological carrying capacity (BEC). Dividing the EEF by itself yields the 

agricultural energy resource pressure index, whereas dividing the PEF by the PEC yields the water 

pollution pressure index. It is suggested that the existing developmental state is unsustainable if the 

ratio is more than 1, as it implies that resource demand exceeds supply. If the ratio is less than 1, it 

means that there are more resources than are needed, which means that sustainable development is 

taking place. 

2.4. Influencing factors 

A model's variables pertaining to agricultural and environmental outcomes are summarized in 

Table 1's descriptive statistics. Economic value (Value), workforce (Employees), environmental 

impact factors (BEF, EEF, PEF, TEF), and agricultural resources (e.g., equipment power, fertilizer 

usage, water availability, planted area, grain production) are all part of the data. Results show a 

large range of lowest and maximum values for the investigated parameters, as well as considerable 

variability among them. A range of 18.57 to 4215.94 (10⁴ hm²) is recorded for agricultural biology 

(BEF), with an average of 1322.53, and the value of agricultural products (Value) is between 

104.01 and 6222.82 (100 million RMB), with an average of 2514.43. Variables having greater 

dispersion, as seen by larger standard deviations, include planted area (Area) and agricultural 

machine power (Power). These numbers show how many different aspects in agriculture, the 

economy, and the environment all interact with one another. 
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Table 1: Factor model variables that have an impact: descriptive statistics 

Variable Indicate Unit Mini Max Mean SD 

Environmental impact 

in agricultural biology 

BEF 10
4
 hm

2
 18.57 4215.94 1322.53 213.14 

The effects of 

agricultural energy on 

the environment 

EEF 10
4
 hm

2
 0.01 65.61 12.77 2.58 

Impact on the 

Environment from 

Agricultural Water 

Pollution 

PEF 10
4
 hm

2
 14.74 2076.42 65.42 92.14 

How agriculture affects 

the ecology as a whole 

TEF 10
4
 hm

2
 44.53 6272.64 2019.75 292.67 

Valuation of 

agricultural produce 

Value 100 million 

RMB 

104.01 6222.82 2514.43 287.94 

Workers in the main 

economic sector 

Employees 10
4
 persons 27.10 1542.01 561.25 73.16 

Total power of 

agricultural machinery 

Power 10
4
 kW 102.12 10944.72 3427.15 529.62 

Consumption of 

chemical fertilizers 

Fertilizers 10
4
 t 4.42 648.01 169.36 24.62 

The whole amount of 

water available 

Water 100 million 

m
3
 

11.01 4597.32 1119.55 183.55 

Sown area in total Area 1000 hm
2
 96.22 14910.12 5412.82 726.28 

Production of grains Output 10
4
 t 29.42 6631.82 1969.52 355.22 

 

3. Outcomes 

3.1. Agricultural TEF, BEF, EEF, and PEF fluctuate throughout time. 

Biological Ecological Footprint (BEF) increased from 49.89% in 2000 to 52.01% in 2010, and 

eventually reached 65.81% in 2020 as a major factor influencing China's agriculture Total 

Ecological Footprint (TEF). The PEF's share of the TEF fell from 49.55 percent in 2000 to 47.33 

percent in 2010 and 33.56 percent in 2020 (Fig. 2). With less than one percent of the total TEF, the 

EEF proved to be a negligible factor. It showed that agricultural production used very little energy 

but a lot of arable land and water. The agricultural PEF must be reduced. 
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Figure 2: Agricultural BEF, EEF, and PEF fluctuations in China from 2000 to 2020  

Aside from agricultural TEF, the per capita figures for PEF, BEF, EEF, and TEF have been rising 

consistently since the year 2000. The TEF per capita increased dramatically from 1.64 hm2 to 3.52 

hm2 between 2000 and 2020, a remarkable increase of 114.6%. The 2000 per capita area of PEF 

was 0.83 hm2, which was more than that of BEF (0.8 hm2) and EEF (0.01 hm2). Figure 3 shows 

that in 2020, the Environmental Footprint of Biocapacity (BEF) per capita was 2.3 hm², which was 

higher than the EEF of Energy (EEF) at 0.03 hm² and the Production Ecological Footprint (PEF) at 

1.2 hm².  

                 

Figure 3: Differences between 2000, 2010, and 2020 in the primary sector's BEF, EEF, and 

PEF per capita in China's agriculture  
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Figure 4: Agricultural BEF, EEF, and PEF fluctuations per farmed area in China from 2000 

to 2020  

The agricultural TEF, BEF, PEF, and EEF per 104 Yuan in China fell steadily from 2000 to 2020. 

The agricultural TEF per 104 Yuan decreased significantly by 65.37 percent, from 9.27 hm2 to 

3.21 hm2, between 2000 and 2020. The yield per 104 Yuan of BEF fell from 4.62 hm² to 1.54 hm², 

a 66.67% drop, between 2000 and 2020. The PEF area per 104 Yuan fell from 4.57 hm² in 2000 to 

0.78 hm² in 2020. Figure 5 shows that between 2000 and 2020, the EEF per 10,000 Yuan dropped 

from 0.07 hm²/10,000 Yuan to 0.04 hm²/10,000 Yuan. Evidence suggests that Chinese farmers 

have become much more resourceful in their use of energy, water, and land. With the biggest drop 

in agricultural PEF per 104 Yuan, China's agricultural water pollution has been on the rise.  

3.2. Geographical distribution of TEF, BEF, EEF, and PEF 

The TEF, BEF, EEF, and PEF of the 31 province-level areas in China were assessed since there 

was a lack of sufficient data from Macao, Taiwan, Hong Kong, and the mainland. Heilongjiang, 

Henan, and Shandong achieved their peak TEF, accounting for 26% of the total national TEF, 

according to the statistics. Their combined TEF was 164.05 million hm². But there was a nil TEF 

in Ningxia, Tibet, Qinghai, and Beijing (Fig. 6a). In 2020, the province of Henan had the greatest 

TEF at 62.72 million hm2, while Beijing, China recorded the lowest at 0.44 million hm2. Xinjiang, 

Jilin, Heilongjiang, and Inner Mongolia have all shown significant increases in their TEF values 

from the year 2000, whereas Zhejiang and Fujian have witnessed decreases. Based on the data 

collected in 2020, Heilongjiang has the largest BEF at 46.18 million hm2. Quite low BEF values 

were recorded for the provinces of Fujian, Tibet, Qinghai, and Beijing. With just 0.19 million hm², 

Beijing has the lowest BEF in 2020. 

3.3. The ecological carrying Capac 

Due to the scarcity of arable land, forest land, grassland, and water resources, the ecological 

pressure indices for China's energy, water, and agricultural resources remained continuously low 

(<1) in 2000, 2010, and either 2020 or 2022. Sustainably managing resources is clearly shown 

here. As of 2022, the BEF/BEC ratio was 0.45 and the EEF/EEC ratio was 0.01. Figure 5 shows 

that in 2020, PEF/PEC was 0.1 and TEF/TEC was 0.17. There was moderate resource strain shown 
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by the Total Ecological Capacity (TEC) rising from 2,738.23 million hm2 in 2000 to 3,570.72 

million hm2 in 2020, while the Total Resource strain Index (TEF/TEC) varied between 0.17 and 

0.18. A favourable trend in the sustainable development of water resources is shown by Figure 

5(c), which shows that although China's PEC has been consistently increasing over the years, the 

PEF/PEC has been progressively reducing. Initially, the EEC was able to make good use of 

energy, but it saw declines in 2000, 2010, and 2020 that were much worse than the agricultural 

EEF (Fig. 5(b)). The following figures were reported in 2020: BEC 910.74 million hm², EEC 

532.41 million hm², and PEC 2127.57 million hm². There was greater pressure from biological and 

ecological concerns than from water, and then from energy. 

 

 
Figure 5: Changes in China's BEC, EEC, PEC and TEC 

 

3.4. Dissimilarities in TEC, BEC, EEC, and PEC between regions. 

             

Figure 6: Comparative analysis of agricultural TEC, TEF, and TEF/TEC across Chinese 

provinces in 2020 
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3.5. Influence analysis of ecological footprint 

Regression analysis results for the variables impacting agricultural environmental impact 

indicators (TEF, Total Ecology, PEF, and BEF) are shown in Table 2. Coefficients show the 

relative importance of each variable and the direction of their impact, whereas t-statistics provide 

the likelihood of a significant result. There is a strong correlation between the Value variable and 

BEF, PEF, and TEF, suggesting that increased agricultural value leads to better environmental 

consequences. Since fertilizers have a negative impact on BEF and a positive one on PEF, they 

play a dual function in both production and pollution, which is why their effects are antagonistic. 

Bigger farms impose more strain on the environment because of the beneficial effects of area and 

output on BEF and TEF. Although BEF and PEF both show excellent model fits with high R-

squared values of 0.99 and 0.93, respectively, EEF's lower R-squared value of 0.46 indicates that it 

has less explanatory power. The model's overall importance, especially for BEF and PEF, is 

confirmed by the likelihood of the F-statistics. The intricate connection between farming methods 

and their effects on the ecosystem is shown by these findings. 

 

Table 2: Outcomes of variables impacting agricultural EEF, BEF, PEF, and TEF 

 EEF BEF PEF TEF 

Variable

s 

Efficien

cy level 

Statistic

s (t-test) 

likeliho

od 

Efficien

cy level 

Statistic

s (t-test) 

likeliho

od 

Efficien

cy level 

Statistic

s (t-test) 

likeliho

od 

Efficien

cy level 

Statistic

s (t-test) 

likeliho

od 

Constant 0.01 1 (0.01) 0.01 1 (0.01) 0.01 1 (0.01) 0.01 1 (0.01) 

Value 0.31 0.54 

(0.67) 

0.07 0.05* 

(1.92) 

0.37 0.04*** 

(2.42) 

0.17 0.02*** 

(3.27) 

Employe

es 

−0.46 0.15 

(−1.24) 

0.01 0.53 

(0.62) 

0.01 0.96 

(−0.02) 

0.01 0.97 

(0.18) 

Power 0.22 0.66 

(0.42) 

−0.18 0.14*** 

(−2.45) 

−0.16 0.32 

(−1.23) 

−0.12 0.27** 

(−1.88) 

Fertilizer

s 

−0.62 0.13 

(−1.29) 

−0.15 0.01*** 

(−5.93) 

0.79 0.02*** 

(5.42) 

0.16 0.11*** 

(3.26) 

Water 0.04 0.74 

(0.11) 

−0.11 0.52 

(−0.67) 

−0.15 0.67 

(−0.48) 

−0.11 0.27 

(−0.47) 

Area 1.58 0.22*** 

(1.47) 

0.18 0.01*** 

(2.79) 

0.15 0.55 

(0.56) 

0.19 0.22*** 

(2.48) 

Output −0.61 0.38 

(−0.96) 

0.98 0.01*** 

(28.72) 

−0.15 0.58 

(−0.57) 

0.69 0.01*** 

(8.23) 

 R-squared:0.46 

Prob(F-

statistic):0.01 

R-squared:0.99 

Prob(F-

statistic):0.00 

R-squared:0.93 

Prob(F-

statistic):0.00 

  

 

4. Discussion 

 

Table 3 shows the results of this study in comparison to those of (Lei et al., 2023) and (Tom et al., 

2021), focusing on the effects on hydrology and the environment. Based on their analysis of Youyi 

Farm's water footprint in the Sanjiang Plain, (Li et al., 2019) determined that in 2019, the per 

capita water footprint was 3.369 hm² and the TEF per unit area was 2.487 hm². For the year 2020, 

(B. Wang, n.d.) measured 128.43 billion m³ as the total gray water footprint of flora, wildlife, and 
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aquaculture in China. The ecological effect of water pollution per capita, according to the current 

Chinese study, is 1.2 hm²/person. This is somewhat lower than the TEF per unit area, according to 

Sun et al., which is 2.3 hm²/person. Based on the total footprint recorded by (Jasechko et al., 

2024)., the gray water footprint of plants is estimated to be 128.35 billion m³ (209.09 million hm²).  

These studies show how agricultural and environmental systems are dynamic by highlighting how 

ecological and hydrological consequences vary between regions and throughout. 

 

Table 3: Analysis of contemporary research in relation to prior studies 

Study Area Hydrological 

ecological 

impact 

TEF per 

unit area 

Grey water footprint Study 

period 

(He et al., 

2022) 

Youyi 

Farm 

located in 

the 

Sanjiang 

Plain, 

China 

The per capita 

water footprint is 

3.369 hm² per 

person. 

2.487 

hm
2
/person 

—— 2019 

(Hussain, 

2021) 

China —— —— The cumulative gray water 

footprint of plants, 

livestock, and fisheries is 

128.43 billion m³. 

2020 

Present 

research 

China The per capita 

ecological 

impact of water 

contamination is 

1.2 hm² per 

person.  

2.3 

hm
2
/person 

The gray water footprint of 

the plant is 128.35 billion 

m³ (209.09 million hm²).  

 

 

The environmental impact of energy use is evaluated using the carbon sink method. Hence, to 

avoid extra computations, the energy ecological footprint or the carbon footprint must be analyzed. 

Much of the literature on water-land-energy systems has ignored regional studies of these three 

factors in farming contexts in favor of more generalized ones (Wang et al., 2024). Studies on 

agricultural resources and the environment tend to ignore the whole ecological impact of 

agriculture in favor of analyzing the connections between water, energy, food, and carbon. 

Agricultural ecological carrying capacity has been largely disregarded in prior studies focusing on 

ecological footprints. The existing research approaches are insufficient to comprehensively assess 

agriculture's ecological carrying capacity for water and energy. It is possible that the EEF/EEC, 

PEF/PEC, and TEF/TEC values were underestimated since this research shows that the ecological 

carrying capacity for water and energy varies by region (Fig. 10 and Fig. 11). Therefore, the 

carrying capacity of water-land-energy systems in agriculture should be evaluated using 

quantitative approaches in the future study. Due to data limitations, this study could only examine 

seven closely linked variables as potential contributors. Consequently, it's possible that the 

findings aren't all-encompassing enough. We must refine the index mechanism to change variables 

further in subsequent rounds. 
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5. Conclusion 

Using ecological footprint and carrying capacity methods, this research examined the spatio-

temporal variations of land, water, and energy in China's agricultural sector. Here are the key 

takeaways: How different regions of China use energy, land, and water for farming varies greatly. 

Land use and water pollution were identified as the most critical problems, whereas energy 

consumption earned the lowest ranking. In addition, there has been a general downward trend in 

water pollution, an almost flat rate of energy use, and an increase in the use of arable land. The 

agricultural industry in China has been seeing a consistent uptick in production. All three 

productivity measures improved, but economic productivity rose faster than land productivity and 

agricultural labor productivity. There was a noticeable increase in the agricultural sector, as the 

usage of TEF per 104 yuan declined by 65.37 percent. There were apparent regional differences in 

the efficiency of agricultural resource utilization throughout China's landscape. Hainan had the 

highest agricultural TEF among the provinces studied, and Jilin had the lowest.  

The disparity between China's ecological footprint and carrying capacity has to be addressed, since 

there are significant regional inequalities in water, land, and energy usage. Levels of TEF and BEF 

were most concentrated in the provinces of Shandong, Heilongjiang, and Henan, following a 

similar pattern to their geographical distribution. Regardless, Sichuan, Hunan, and Tibet were the 

regions with the highest TEC levels. Thus, going forward, it is crucial to improve the geographical 

distribution of agricultural resources and correct the regional balance of land, water, and energy. 

Due to a resource excess, China was able to sustainably expand its agricultural sector. However, 

there were notable differences across different regions. For example, the provinces of Tianjin, 

Hebei, Shandong, and Henan all used their agricultural resources at levels above what could be 

sustainably produced, leading to a discrepancy between the agricultural ecological footprint and 

carrying capacity. Consequently, the efficient use of resources and their responsible expansion are 

of the utmost importance in the agricultural sector. 
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